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During root canal treatment many procedural accidents may occur of which perforation
of the root canal system plays a significant role. Perforation is defined by the American
Association of Endodontics (AAE) Glossary of Endodontic Terms (2003) as a
mechanical or pathological communication between the root canal system and the
external tooth surface, which is caused by caries, resorption or iatrogenic factors. It
has been identified as the second greatest cause of endodontic failure that accounts
for 9.6% of all unsuccessful cases (Pitt Ford et al, 1995). 
As a result of furcation perforation, destruction of the periodontal tissues may occur,

which ultimately lead to loss of the tooth (Arens, Torabinejad, 1996; Tsesis, Fuss,
2006). The prognosis of the tooth depends upon several factors: 
1. The severity of initial damage to the periodontal tissue
2. The location and size of perforations
3. The bacterial contamination
4. The sealing ability or cytotoxicity of the repair materials (Tsesis, Fuss, 2006; Sinai,
1977; Balla et al, 1991). 
Even if a biocompatible material is used to treat a perforation, extensive injury may

cause irreversible damage to the attachment apparatus at the furcation area (Sinai et
al, 1989). 
In large perforations, the complete sealing of the defect with a repair material is

problematic and allows irritants to continuously penetrate into the furcation area (Balla
et al, 1991). Perforations close to the gingival sulcus produce persistent inflammation
and a down-growth of sulcular epithelium into the defect (Tsesis, Fuss, 2006). Sinai
(1977) stated that coronally located perforations including furcal perforations were
more serious than those in the middle and apical third of a canal. It is the objective of
this review to collect and review the data that is available in the scientific literature and
to reach a conclusion as to the best treatment options.

Methods
Retrieval of literature
An English-limited Medline search was performed of articles published from 2002 to
2015. The searched keywords included ‘perforations and endodontics’, ‘furcation
perforation’, ‘root canal and perforation’, and ‘perforation and mineral trioxide
aggregate (MTA)’. Then, a hand search was done of the references of collected articles
to determine if more papers relevant to the topic should be included.

Results
A total of 820 articles were found, which, in order of their related keywords, accounted
for the following: perforations and endodontics: 285; furcation perforation: 92; root
canal and perforation: 299; and perforation and mineral trioxide aggregate (MTA): 144.
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Perforation repair techniques and their prognosis
Surgical and non-surgical approaches have been utilised for
periodontal tissue re-establishment at the perforation site. In
both surgical and non-surgical approaches, two factors
should be considered: 
1. An appropriate material selection
2. The use of a matrix (Clauder, Shin, 2009). 
The repair material should be selected based on the

following criteria:
• Perforation site accessibility
• Biocompatibility (be nontoxic and noncarcinogenic)
• Ability to induce osteogenesis and cementogenesis
• Moisture control 
• Easy handling
• Aesthetic considerations (Clauder, Shin, 2009; Bryan,
Woollard, Mitchell, 1999; Yildirim et al, 2005; Samiee et
al, 2010).

Matrix use
Controlling haemostasis and placement of the repair material
in the perforation site without extrusion into surrounding
periodontal structures are essential prerequisites for the
success of a perforation repair. In order to achieve a fluid-
tight seal, haemostasis has to be controlled (Clauder, Shin,
2009). Delayed perforation repair can lead to extrusion of
repair materials as a result of breakdown of the surrounding
periodontium that is replaced by granulation tissue. Thus, in
an attempt to avoid extrusion of the repair material, internal

matrices such as calcium sulphate, hydroxyapatite, collagen,
demineralised freeze-dried bone and Gelfoam have been
used (Clauder, Shin, 2009; Roda, 2001; Bargholz, 2005).
The internal matrix concept was introduced by Lemon

(1992) in order to adequately seal the furcation perforation
and avoid extrusion of the material. He also recommended
the use of hydroxyapatite as a matrix under amalgam.
Calcium sulphate and calcium hydroxide prevented extrusion
of composite resin when used as a furcal repair material
(Imura et al, 1998). In 1999, Jantarat and colleagues
demonstrated that amalgam placed with plaster of Paris as
a matrix for furcal perforation repair improved its sealing
ability. Hapset (65% non-resorbable hydroxyapatite and
35% plaster of Paris) and hydroxyapatite showed similar
healing responses when used as internal matrices under
amalgam (Rafter et al, 2002). Rafter et al (2002) further
reported that there was marked extrusion of amalgam into
the underlying bone with an associated severe inflammatory
response when used alone without a matrix.
Although it has been reported that without using an internal

matrix the optimal strength and excellent sealability of MTA
was achieved in the presence of moisture (Arens,
Torabinejad 1996; Holland et al, 2001; Torabinejad et al,
1994), conflicting results have been reported by some
authors regarding the use of an internal matrix under MTA.
In 2004, Kratchman suggested that the perforation site
should be soaked with sodium hypochlorite after haemostasis
had been achieved and that a physical barrier such as
collagen or calcium sulfate must be used at the perforation
site to prevent MTA from being packed into the bone.
According to Bargholz (2005), excellent clinical results

were achieved when collagen matrix was used under MTA.
A study by Al-Daafas and Al-Nazhan (2007) showed that
calcium sulfate prevented extrusion of the repair material.
However, an unfavourable inflammatory reaction – epithelial
tissue migration into the defected perforation and the inability
to induce bone regeneration – were detected. Thus, the
authors concluded that using calcium sulphate as an internal
matrix for MTA is not recommended. When used as an
internal matrix for furcal perforation repair, calcium sulfate
and Collaplug (Calcitek, Carlsbad, CA) did not improve the
sealing ability nor reduce the incidence of MTA
overextension. Therefore, the authors concluded that these
two materials are not recommended as an internal matrix for
MTA (Zou et al, 2008). Furthermore, calcium sulfate and
hydroxyapatite did not improve the sealing ability of MTA
when used as internal matrices for furcation perforation repair
(Taneja, Kumari 2011).

Figure 1: This illustration depicts a furcation perforation repair
using stem cells, scaffold and growth factor. This method has the
potential to open new avenues in furcation repair treatment in
the foreseeable near future. This image relates to the text under
‘future perspectives for the perforation repair’ on page 40.
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Materials used for furcation perforation repair
In an attempt to repair a furcation perforation, several
materials such as amalgam, tricalcium phosphate (TCP),
hydroxyapatite, gutta percha, calcium hydroxide, zinc oxide-
eugenol-based cement (IRM and Super-EBA), glass ionomer
cement, composite resins, resin-glass ionomer hybrids,
demineralised freeze-dried bone and MTA have been used
over the years (Arens, Torabinejad, 1996; Balla et al,
1995; Bryan, Woollard, Mitchell, 1999, Yildirim et al,
2005; Salman et al, 1999). However, none fulfil all requisite
qualifications for an ideal biomaterial. 
Balla et al (1991) reported that no hard tissue was formed

at the furcation perforation defect site when treated with either
tri-calcium phosphate, hydroxyapatite, amalgam or calcium
hydroxide (Life); instead, the defect site was occupied by
epithelium and acute inflammatory cells (Balla et al, 1991).
MTA is water-based cement that is derived from Portland
cement (type I). It was introduced as a root-end filling material
in the early 1990s (Torabinejad, Watson, Pitt Ford, 1993;
Torabinejad, Chivian, 1999). It was subsequently determined
that it was a suitable material for various clinical applications
such as pulp capping, repair of furcal perforations as well as
root-end closure (Sinai et al, 1989; Torabinejad et al, 1995).
MTA promotes periradicular tissue regeneration (Pitt Ford et
al, 1995; Yildirim et al, 2005; Holland et al, 2001; Zhu,
Xia, Xia, 2003; Noetzel et al, 2006) and it differs from other
materials by its ability to promote cementum regeneration,
thus facilitating the regeneration of the periodontal apparatus
(Pitt Ford et al, 1995; Arens, Torabinejad, 1996). Its
biocompatibility nature is suggested by its ability to form
hydroxyapatite when exposed to simulated body tissue fluid
(Sarkar et al, 2005).
Two commercial forms of MTA are available; Proroot MTA

(Dentsply Tulsa Dental), which is available in both gray or
white form, of which the latter contains a lower amount of

iron, and MTA-Angelus (Angelus) (Asgary et al, 2005). MTA-
Angelus was introduced to address the long setting time from
two hours for Proroot MTA to 10 minutes for MTA-Angelus.
MTA-Angelus contains 80% Portland cement and 20%
bismuth oxide, with no addition of calcium sulfate, while
Proroot MTA is composed of 75% Portland cement, 20%
bismuth oxide, and 5% calcium sulfate dehydrate (Hashem
et al, 2008). The constituents of the Portland cement are
minerals, amongst which the most important are dicalcium
silicate, tricalcium silicate, tricalcium aluminate, tetracalcium
ironaluminate and dehydrated calcium sulfate (Oliveira et al,
2007; Asgary et al, 2009a). The only significant difference
between the dominant compounds of white and gray MTAs
and associated Portland cements is bismuth oxide, which is
present in MTAs (Asgary et al, 2009a; Asgary et al, 2004).
It has been reported that the sealing ability of MTA (Loma

Linda University, Loma Linda, CA) was significantly better
compared to amalgam in preventing leakage of
Fusobacterium nucleatum through furcal perforations
(Nakata, Bae, Baumgartner, 1998). When used to seal a
large furcation perforation, Proroot MTA with/without internal
matrix and MTA-Angelus with internal matrix showed the
lowest dye absorbance compared to zinc oxide-eugenol
cement (IRM) with/without internal matrix and MTA-Angelus
without internal matrix. Additionally, the authors reported that
IRM without internal matrix had the highest dye absorbance
(Hashem, Hassanien, 2008). However, white and gray MTA
(Dentsply Tulsa Dental) showed no significant differences in
microleakage when used for furcal perforation repair (Ferris,
Baumgartner, 2004; Hamad, Tordik, McClanahan, 2006).
Furcal perforations have been repaired with Proroot gray
MTA (Dentsply) and Geristore (Denmat). Geristore has been
used as a root end filling material and in the restoration of
subgingival surface defects such as root surface caries and
iatrogenic perforations, surgical repair of root perforations

Figure 2: The three key elements of dental tissue engineering are stem cells, scaffolds and signals.
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and as an adjunct in guided-tissue regeneration (GTR)
(Mehrvarzfar et al, 2010). It also leaked significantly less
than amalgam (Mehrvarzfar et al, 2010). In the
aforementioned study, the authors reported that the sealing
ability of MTA and Geristore was reduced when bioglass
was used as a matrix underneath. 
Sluyk, Moon and Hartwell (1998) assessed the effect of

time and moisture on setting, retention and adaptability of
MTA when used for furcal perforation repair. Findings showed
that MTA adaptation to perforation walls increased in the
presence of moisture. They further suggested that a moistened
matrix can be used under MTA to prevent under- or overfilling
of the material. Furthermore, Main et al (2004) indicated that
MTA provided an effective seal for root perforations. 
Yildirim et al (2005) investigated the histologic response

to MTA and Super EBA (Bosworth Company) when used in
furcation perforation repair in dogs. In their study, less
inflammation and new cementum formation was observed
with MTA compared to Super EBA, which demonstrated
connective tissue repair without inflammation. Similar abilities
to seal furcal perforations were observed for both Portland
cement and MTA (De-Deus et al, 2006; Noetzel et al,
2006) evaluated histologically the inflammatory reactions
and tissue responses to experimental tricalciun phosphate
(TCP) and MTA when used as repair materials in furcation
perforations in dogs. Results showed no significant
differences between MTA and TCP in terms of bone
reorganisation or deposition of fibrous connective tissue.
Thus, MTA is considered the gold standard and material

of choice for perforation repair and has demonstrated good
potential for clinical success. However, it has some
disadvantages, including the inability to degrade to allow
for replacement with natural tissues, low resistance to
compression over the long-term, extended setting time, poor
handling, and difficult insertion into cavities because of its
granular consistency, while additional moisture is required to
activate the cement setting, and lastly, the high cost, despite
its widespread use (Torabinejad et al, 1995; Chng et al,
2005; Kogan et al, 2006; Coomaraswamy, Lumley,
Hofmann, 2007; Parirokh, Torabinejad, 2010). Many
dental materials have been demonstrated in the literature to
exhibit cytotoxic effects during setting. Low cell numbers were
demonstrated in vivo with freshly mixed MTA (pH=10.2)
compared to preset MTA (pH=12.5) (Tronstad, Wennberg,
1980). However, histologically, no difference in bone and
cementum regeneration was observed after periradicular
surgery in dogs between fresh and preset Proroot MTA
(Apaydin, Shabahang, Torabinejad, 2004).

In 2006, Asgary and colleagues introduced a new
endodontic cement, a calcium-enriched mixture (CEM)
cement. Major components of CEM cement powder are
51.75 wt.% calcium oxide, 9.53 wt.% sulfur trioxide, 8.49
wt.% phosphorous pentoxide, and 6.32 wt.% silicon
dioxide; whereas the minor essential constituents are
aluminium oxide > sodium oxide > magnesium oxide >
chlorine. CEM cement has a similar pH but an increased
flow compared to MTA. However, working time, film
thickness and price are considerably less (Asgary et al,
2008a). Unlike MTA, mixed CEM cement releases calcium
and phosphate ions and forms hydroxyapatite not only in
simulated body tissue fluid but also in normal saline solution
(Asgary et al, 2009a; Amini et al, 2009).
Although the chemical composition of CEM cement and

MTA are different, they have similar clinical applications
(Asgary et al, 2008b; Asgary  et al, 2008c; Asgary et al,
2009b; Asgary, Ehsani, 2009c). Similar to MTA, CEM
cement had low cytotoxic effects on different cell lines
(Asgary et al, 2009d). However, it showed a better
antibacterial effect comparable to calcium hydroxide (Asgary
et al, 2008d). Similar sealing ability was demonstrated by
both Proroot MTA and CEM when used to repair furcal
perforation of primary molar teeth (Haghgoo et al, 2014).

Non-surgical approach
When a perforation repair is indicated, it is recommended
to first attempt an intracoronal approach (non-surgical) to
preserve the periodontium thus increasing the chances of
success (Regan, Witherspoon, Foyle, 2005). Generally,
perforations coronal to the crestal bone fall into the category
of a non-surgical approach. The use of a surgical microscope
operated at high magnification and with ample illumination
allows for better management of perforation repairs
(Kratchman, 2004; Daoudi, Saunders, 2002). 
A surgical approach may complicate the treatment and lead

to loss of periodontal attachment, chronic inflammation and
furcal pocket formation (Arens, Torabinejad 1996). Experience
has shown that buccally located perforations are easier to repair
than lingual or proximal lesions. Lingual located perforations,
especially in the mandible, should be treated non-surgically or
orthodontically. If they are not responding to treatment, the tooth
should be extracted (Regan et al, 2005). If a tooth can be
extruded orthodontically to a point where the perforation
reaches a supragingival level, repair of the defect will be greatly
facilitated (Smidt, Lachish-Tandlich, Venezia, 2005). Whether
clinically practical or not, one case of intentional reimplantation
was reported after repair of the perforation was performed on
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the extracted tooth (Poi et al, 1999).
In cases of large perforations, bleeding should be

controlled first using sterile saline. Alternatively, calcium
hydroxide, calcium sulphate, or collagen has been used
(Clauder, Shin 2009). For bleeding control, non-specific
intravascular clotting agents should be avoided as they may
lead to alveolar bone damage and delay in healing (Lemon,
Steele, Jeansonne, 1993). In cases of perforations that are
infected or perforation sites that need further enlargement
and cleaning, burs or ultrasonic tips may be used. However,
ultrasonic tips are preferable as they are gentler to the
adjacent periodontium tissues (Pitt Ford et al, 1995; Arens,
Torabinejad, 1996; Clauder, Shin, 2009). For cleaning of
infected perforations, 2.5% sodium hypochlorite has been
used (Arens, Torabinejad, 1996), however, sterile saline is
indicated in large perforations (Clauder, Shin, 2009). To
avoid blockage of the canals with repair material, gutta
percha points, paper points, cotton pellets or an easily
removable material (such as Cavit) should be placed over
the canal orifices (Clauder, Shin, 2009).
A resin-bonded material such as Geristore (Denmat) is

recommended to restore subgingival defects (Clauder, Shin,
2009), which also serves as an adjunct to GTR (Abitbol et
al, 1996; Behnia, Strassler, Campbell, 2000). It is less
sensitive to moisture than conventional glass ionomer cement
while a drier environment improved the results (Cho, Kopel,
White, 1995). Adhesive materials can be used in
supracrestal perforations, whereas MTA is preferable in
subcrestal perforations (Clauder, Shin, 2009). If a perforation
defect involves bone destruction (intraosseus defect), a barrier
is needed to facilitate controlled placement of the repair
material. This is not necessaary if the defect does not include
an intraosseus defect (Clauder, Shin, 2009). If MTA is used
a moist cotton pellet should cover the material to allow setting
of the material. After perforation repair the final restoration
can be placed either after one day or one week. Once repair
has been achieved the root canal(s) can be cleaned, shaped
and filled (Pitt Ford et al, 1995; Arens, Torabinejad, 1996).
If a perforation is present in the middle third of the root,

the canal(s) should be prepared first before closing the defect
to avoid blocking the canal. With the aid of an operating
microscope, obturation of the canal apical to the defect
should be done first, followed by filling the remainder of the
canal and the perforation site with MTA (Clauder, Shin,
2009). Alternatively, the root space beyond the perforation
can be maintained by means of a file or gutta percha cone.
In case a file is used, it should be loosened after finishing
the repair procedure to allow easy removal before the MTA

is fully set (Clauder, Shin, 2009). The other option is to use
a gutta percha point and soften it with heat to the dentinal
wall opposing the perforation. MTA is then placed at the
defect site (Clauder, Shin, 2009). Perforations at the apical
one-third are quite challenging and difficult to manage.
Successful treatment cannot always be achieved for all cases
necessitating apical surgery or extraction of the tooth to
remedy the problem (Clauder, Shin, 2009).

Surgical approach
Surgical intervention (external approach) is indicated in areas
that are not accessible by non-surgical means alone, cases
that have not responded to non-surgical treatment or in
repairing a perforating resorption (Regan et al, 2005). The
surgical approach is performed by reflecting a flap at the
perforation site followed by cleaning and preparing the
perforated area and finally packing the repair material
(Alhadainy, 1994).
During the surgical repair procedures, cortical bone

damage is involved, which may result in reduced success of
the corrective surgical procedure. Thus, a GTR technique has
been recommended for successful treatment outcomes by
using either non-resorbable or resorbable membranes as a
barrier (Duggins et al, 1994; Barkhordar, Javid 2000;
Rankow, Krasner, 1996; Dean et al, 1997; Leder et al,
1997). This barrier guides selected cells to populate at the
perforation defect, ie, placing the barrier between the
gingival tissue and the perforation defect will facilitate the
repopulation of the defect by periodontal ligament cells and
other osteogenic cells and prevents the colonisation by
gingival cells (Linde et al, 1993; Sandberg, Dahlin, Linde,
1993). A resorbable membrane is generally preferable, as
it does not need a second surgical procedure to remove it.
However, in some cases, titanium-tented membrane or a
supporting graft material is needed to prevent collapsing the
membrane into the defect (Abitbol et al, 1996).

Cementum regeneration and role in the periodontium
reconstruction
Cementum formation is very essential in the furcation
perforation repair process (Pitt Ford et al, 1995; Clauder,
Shin, 2009; Samiee et al, 2010; Zairi et al, 2012). Pitt
Ford and colleagues (1995) evaluated the histologic
response to experimentally induced furcation perforations in
dog mandibular premolars repaired by either MTA or
amalgam and found that most of the MTA samples showed
no inflammation and cementum deposition, whereas with the
use of amalgam, moderate to severe inflammation with no
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cementum deposition was present.
Healing after intentional perforations in dogs’ teeth was

evaluated after repair with either MTA or Sealapex (Kerr)
(Holland et al, 2001). Most samples sealed with MTA
showed new cementum deposition and an absence of
inflammation. In 2010, Samiee and colleagues reported that
cementum-like hard tissue was formed using either MTA or
CEM cement in the furcation perforation in dogs in the
presence of a mild inflammatory response. The authors
concluded that both materials showed a similar favourable
biological response in furcation perforation repair.
Zairi et al (2012) compared the inflammatory reactions

and tissue response of furcal perforations in dogs’ teeth to
growth factors, TGFβ1, basic fibroblast growth factor
(bFGF), osteogenic protein-1 (OP-1) and IGF-I, with MTA or
IRM as controls. The authors reported that a clear stimulatory
effect on cementum formation and inhibition of collagen
capsule formation was exerted by the growth factors.
However, MTA exhibited better results than the growth
factors. Based on that, the authors suggested a further study

comparing the effects of application of growth factor mixture
with MTA and MTA alone on tissue healing and
regeneration.
In a case report, Bains et al (2012) used tissue

engineering principles for the furcation perforation repair of
the pulpal floor of the right mandibular first molar of 39-year-
old male patient using MTA and platelet-rich fibrin (PRF). The
authors reported that this combination was able to repair the
perforation defect and regenerate the lost periodontium in
the furcation area effectively. A case report (Eghbal, Fazlyab,
Asgary, 2014) was published describing the nonsurgical
endodontic management of an extensive perforation of the
floor of the pulp chamber in a first mandibular molar of a
28-year-old Caucasian female using CEM cement. The
authors reported that CEM was able to induce hard tissue
formation, ie bone and cementum.

Cellular tissue engineering approach for cementum
regeneration
A proposed therapeutic approach was reported by the
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removal of autologous cells from the patient’s periodontal
ligament (PDL), culturing of the cells in vitro, which were then
placed back onto the exposed root coated with chemo
attracting factors, subsequently covering the area with an
artificial basement membrane (Terranova, 1990). However,
it is unknown whether this method produced the desired
effect. Lekic and colleagues (2005) reported that rat
periodontal and bone marrow cells were able to differentiate
into periodontal ligament fibroblasts, osteoblasts and
cementoblasts when transplanted into periodontal wounds in
rats, thus contributing to periodontal regeneration.
Regeneration of cementum, PDL and alveolar bone have

been observed using auto-transplantation of bone marrow
derived mesenchymal stem cells (BMMSCs) (Kawaguchi et
al, 2004) or periodontal ligament cell sheet (Akizuki et al,
2005) into periodontal osseous defects in dogs. However,
the principle disadvantage of cell sheets is their delicate
structure and difficult handling during surgery (Li, Jin, 2015).
Furthermore, the harvest of bone marrow (BM) is a highly
invasive and a painful procedure for the donor. Moreover, it
has been reported that the number, proliferation and
differentiation potential of BMMSCs decline with increasing
age (Kern et al, 2006).
It has been reported that cementoblast-biodegradable

poly(lactic-co-glycolic acid) (PLGA) polymer sponge-treated
defects showed complete bone bridging and PDL formation,
whereas minimal evidence of osteogenesis was exhibited by
follicle cell-treated defects along the root surface of athymic
rats (Zhao et al, 2004). Periodontal ligament stem cells
(PDLSCs) have the ability to differentiate into cementoblast
and osteoblast (Isaka et al, 2001; Seo et al, 2004) and
have shown potential therapeutic applications in
periodontium regeneration. However, the very low number
of these cells residing in the PDL is indicative of the difficulty
acquiring a sufficient number for regenerative treatment
remains and is an issue that remains unresolved (Maeda et
al, 2011). Primary cultures of PDLSCs yielded small cell
numbers, therefore before application, PDLSCs must
proliferate at least 12 population doublings (Zhu, Liang,
2015). Additionally, it has been found that the proliferation
and migration ability and differentiation potential of PDLSCs
decreased with increasing age (Zhu, Liang, 2015).
Apical tooth germ cells conditioned medium were able to

provide the cementogenic microenvironment and induced
the cementoblastic differentiation of PDLSCs (Yang et al,
2009). Hertwig’s epithelial root sheath (HERS) cells, or their
secreted products, were able to induce PDL cells
differentiation along the cementoblastic lineage in vitro

(Zeichner-David et al, 2003). Several in vivo studies have
also shown the potential capability of PDLSCs to form
cementum and PDL-like tissues (Yang et al, 2009; Liu et al,
2008; Feng et al, 2010; Park, Jeon, Choung, 2011).

Regenerative therapy 
Tissue engineering is an interdisciplinary field that applies the
principles of engineering and life sciences toward the
development of biological substitutes that restore, maintain, or
improve tissue function or a whole organ (Langer, Vacanti,
1993). Tissue engineering aims to stimulate the body either to
regenerate tissue on its own or to grow tissue outside the body,
which can then be implanted as natural tissue (Nadig, 2009).

Triad components
Regenerative endodontics can be defined as biologically
based procedures designed to replace damaged structures,
including dentine and root structures, as well as cells of the
pulp-dentine complex (Murray, Garcia-Godoy, Hargreaves,
2007). This approach consists of the following interactive
triad: 1) an appropriate cell source; 2) a supportive matrix
(scaffold); and 3) inductive biological factors or signals
(Figure 1). To create regenerative therapies, these disciplines
are often combined rather than used individually (Murray,
Garcia-Godoy, Hargreaves, 2007).

Future perspectives for the perforation repair
Reconstruction of the lost attachment via regeneration of the
periodontium components, such as cementum, PDL and
bone, is essential in the repair of perforated areas.
Replacement of the lost cementum (cementogenesis) is very
critical and enhances the reattachment of the fibres of the
periodontal ligament. Several studies have been published
that demonstrate the ability of different materials to repair
furcation perforations, albeit with variable success rates. 
However, during recent years, there has been a paradigm

shift from conventional to regenerative endodontic therapy
and repair of the periodontium is not an exception. To date,
to the best of our knowledge, no studies have been
published in the literature reporting on the effect of the triad
application (stem cells, scaffold and growth factor) for furcal
perforation repair and the response of surrounding tissues
(cementum, PDL and alveolar bone). We propose a stem cell-
based tissue engineering approach for furcation perforation
repair through enhancing of stem cell differentiation along
the cementoblastic lineage in association with scaffold and
growth factor. The suggested biomimetic approach is
illustrated in Figure 2. This will have the potential to open a
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new era and strategy in endodontic and periodontal tissue
engineering therapies.

Conclusions
Perforation of the pulp chamber floor of multi-rooted teeth
constitutes a perplexing and frustrating problem. It is a major
cause of endodontic treatment failure. A furcation perforation
has to be regarded as an endodontic and periodontal
problem. The inflammatory response in the periodontium,
leading to irreversible loss of periodontal attachment in the
area, can result in loss of the tooth if the perforation is not
successfully repaired. To re-establish the periodontal tissue in
the perforation site, surgical and non-surgical techniques
have been utilised. 
For furcation perforation repair, several materials have

been used with varying results. However, the stem cell-based
tissue engineering approach is very promising and is suitable
for furcation perforation repair. This approach has the
potential to revolutionise the practice of regenerative

endodontics in the future and may therefore save many teeth
that would otherwise have to be extracted due to a poor to
hopeless prognosis. 
Moreover, it will help and assist in designing regenerative

therapies based on sound biological principles, which can
be applied in both endodontic and periodontal specialties.
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