Article: Direct restoration in the aesthetic zone. Gerrard, page 6

1. In the case described, what was the reason for the patient having composite restorations placed previously?
 - a. Widespread erosion as a young child
 - b. Underdeveloped incisors
 - c. To mask hypoplastic white spots
 - d. To restore them following trauma

2. What was the diagnosis made for the patient’s presenting appearance?
 - a. Tetracycline staining
 - b. Mild Fluorosis
 - c. Nonvitality of the central incisors

3. Prior to any restorative treatment, the patient was referred to a colleague for:
 - a. Esthetic orthodontic alignment of the lower dental arch
 - b. Esthetic orthodontic alignment of both upper and lower dental arches
 - c. Esthetic orthodontic alignment of the upper dental arch

4. For what length of time should whitening be stopped prior to composite placement to minimise any effect on bond strengths?
 - a. Two weeks
 - b. 5 days
 - c. One month

5. What was the reason for the patient declining resin infiltration?
 - a. The cost was prohibitive
 - b. She would have an allergic reaction to the material
 - c. She was happy with the aesthetic appearance of all teeth other than that of UR1/UL1
 - d. She was concerned about the success rate of the treatment

CPD QUESTIONNAIRE 6.6.2

Article: Violet and blue light-induced green fluorescence emissions from dental calculus: a new approach to dental diagnosis. Shakibaie and Walsh, page 32

11. Which statement is correct: Results in the study described, supra- and subgingival calculus showed moderately intense green fluorescence emissions, which were:
 - a. Stronger than sound tooth surfaces, but less intense than those from dental caries
 - b. Stronger than dental caries, but less intense than those from sound tooth surfaces

12. According to the authors, traditional examination methods to reliably detect calculus deposits are:
 - a. Tactile examination with a periodontal probe for subgingival calculus
 - b. Visual inspection for supragingival calculus
 - c. Both of the above
 - d. Neither of the above

13. Which statement is correct: Intra-oral cameras currently in clinical use employ fluorescence imaging to enhance detection of dental caries, with the excitation light being:
 - a. In the violet or blue range (400-470 nm wavelength)
 - b. In the green or red range (>540 nm wavelength)

14. The samples in Experimental Group A all had:
 - a. Root cavities
 - b. Recurrent decay
 - c. Coronal cavities

15. To evaluate the impact of saliva and blood, samples to be imaged were first:
 - a. Covered by either a 7 μL or 14 μL drop of blood
 - b. Covered by a 7 μL drop of saliva and a 14 μL drop of blood
 - c. Covered by either a 7 μL or 14 μL drop of saliva

16. Which statement is correct: From the digital images:
 - a. The magnetic lasso tool in Adobe Photoshop CS2™ software was used to outline the sample target area
 - b. The polygonal lasso tool in Adobe Photoshop CS2™ software was used to outline the sample target area

17. Considered as a group, calculus samples in the moist state or when covered by saliva consistently gave luminosity scores of up to:
 - a. 170 for blue light excitation, and up to 200 for violet light excitation
 - b. 170 for violet light excitation, and up to 200 for blue light excitation

18. Which statement is correct: In terms of the effect of surface conditions under violet or blue light excitation, there were no statistically significant differences between:
 - a. Supragingival calculus under violet light
 - b. Moist or saliva-coated surfaces for any sample type
 - c. Both of the above
 - d. Neither of the above

19. In terms of overall rankings, the results from the present study show the strongest emissions from:
 - a. Sound tooth structure, followed by dental calculus deposits, and then by dental caries
 - b. Dental calculus deposits, followed by dental caries and then by sound tooth structure

20. Which statement is correct: Water has very poor absorption of visible green, blue and violet light.
 - a. Blood has very poor absorption of visible green, blue and violet light.
 - b. Water has very poor absorption of visible green, blue and violet light.